

Rust for IOT

talks.edunham.net/lca2019
@qedunham

edunham on irc.mozilla.org

Hi! I hope you're here to talk about Rust and IOT with
me. I've contributed to the Rust project in various
ways for awhile, and done a variety of home
automation and robotics stuff thoughout my career.
You will not have heard of me from any prominent
embedded Rust projects or the fantastic embedded
Rust book, because those things are written by
experts who know better than to try to fit any
summary of the topic into 45 minutes. And that's just
what I'm going to do.

When I first proposed this talk to LCA, there wasn't a
central repository of all the scattered Rust-on-
embedded-systems knowledge. between the
proposal and today some fantastic resources have
been published that I'll recommend to you as we go
through. This frees me up to do a little exercise at the
end that takes advantage of what makes a
conference like this really special: the other humans
in the room. In lieu of a regular Q&A session, at the
end I'll ask everyone who wants to connect with
others about their Rust project or idea to give us a
quick sentence summary of what that idea is, and I
have these Rust mascots for you to display to make
it easy for others to find you through the conference.

First things first, you've probably heard of the Rust
language. It attacks the appparent dichotomies
between human-readable versus fast on hardware,
ergonomic to develop versus verifiable, by sweeping
a lot of problems under the rug of the compiler and
then buiding a compiler robust enough to address
them. To write code free of certain classes of bug in
any language, you need to follow a series of rules,
and what sets Rust apart is that these rules live
explicitly in the language specification and are
enforced at compile time rather than just living in a
book or in the programmers' memories.

What we call safe Rust is the set of all programs that
the compiler can be persuaded don't violate the rules
-- we know positively that they are right. Unsafe Rust
is written for circumstances where the compiler can't
prove exhaustively that the program is right, but it
can at least show that it's not wrong in certain ways,
and the rest is left to the programmer to reason
about.

The Rust community is constantly improving the
compiler to expand the set of valid programs it can
recognize and remove unexpected behaviors, and so
development tends to move really fast. If you've
come to my LCA talks in the past, I've discusses how
a new bleeding-edge release full of features we're
not sure will be permanent parts of the language
comes out every day as the nightly channel, some
features graduate to a beta channel for testing, and
then some of those come out into "stable" that's
released every 6 weeks and backwards-compatible
with other stable Rust versions.

What's changed since this time last year is they've also
added the concept of editions and released the 2018
edition. Editions are opt-in and add a set of features
that would not have been backwards compatible with
the prior versions. For instance, the more conscise
"use foo" syntax for importing an external crate (in
lieu of "extern crate foo") is not valid in older Rusts,
but it is valid in programs that have opted into the
2018 edition.

So, to talk about Rust on IOT, we need to pick a
snapshot of that buzzword to work from. So, IOT is a
bunch of Things -- physical devices with computers
in them -- that interface with the physical world
through I/O (input/output devices) and communicate
with other devices or users over a network, often but
not always a public one. In practice, this often falls
into the design pattern of a central server talking to a
bunch of physical devices that are geographically
dispersed through an environment.

So, we need software on both sides – software to run
the server, and software to run the devices. Both can
be written in Rust.

But most programmers find working with hardware
more unfamiliar and challenging than writing code to
run on a server.

That central server or database in many IOT design
patterns is actually an extremely familiar use case if
you've done web development before, and working
on that end is a great place to start if you're learning
a new programming language. There are generally
more resources and mentors available to help you
debug a web server problem than a hardware one.

Plus, writing code that runs on an operating system
lets you avoid thinking about many hardware
problems while also thinking about your code. The
operating system can hide these problems from you,
whereas your code has to deal with them directly if it
runs without an operating system.

iot.mozilla.org/specification

github.com/mozilla-iot/wiki/wiki/Supported-Hardware

If you choose to have your devices talk to the server
over a spec such as the Web Thing Standard
(https://iot.mozilla.org/specification/), you can build
on the work that others have done and potentially get
IOT project started without having to do any
embedded development at all.

The Mozilla Things project Rust example shows how to
leverage the webthing crate to set up a server that, in
their example, talks to a dimmable light and a
humidity sensor that expose the WebThing API. If
you go this route, check out the wiki
(https://github.com/mozilla-iot/wiki/wiki/Supported-
Hardware) for a list of supported devices that are
likely to integrate well with the Web Thing server.

If you’re interested in learning more about the Things
project, Kathy Giori will be running a workshop in A3
from 3:50-5:30pm tomorrow.

 github.com/wezm/linux-conf-au-2019-epaper-badge

I point this out because when you run a program within
an operating system, the standard library makes all
kinds of useful guesses about what you want for
multithreading and i/o. It’s better to avoid
reimplementing these features when you can,
because the standard library has been well tested
over many years on a variety of platforms.

 As a rule of thumb, if a board is commonly used to run
a Linux derivative, you can probably write Rust with
the standard library to target it. A great example of
this, hopefully here in the room right now, is Wesley
Moore's epaper badge written in Rust, source at link.
He runs a Linux derivative on a Raspberry Pi, which
means a regular Rust program can interface with
peripherals such as the epaper screen through the
operating sytsem.

But what about the tiny little chips -- those with power,
size, or price constraints that rule out the overhead of
running an operating system under your program?
Writing software for these, like writing operating
sytsems, is referred to as embedded programming.
When you don't have an operating system exposing
multithreading and I/O primatives to your standard
library, you have to be more explicit about telling your
program how you want it to do these tasks.
Micromanaging how the hardware is used means
that the resulting code is less portable across
families of hardware. These families are called
platforms.

Fortunately, Rust already provides support for a variety
of platforms out of the box.

 forge.rust-lang.org/platform-support.html

Rust categorizes its support for various platforms in
tiers . Tier 1 is "guaranteed to work" Every change to
Rust is tested on every tier 1 platform. Tier 2 is
"guaranteed to build", in that each change is tested
that code still builds, but the code is not always run
for testing, often due to limited availability of
appropriate hardware. Tier 3 "might work but no
promises", for platforms on which we can’t always
test that code will build.

 These different levels of testing correlate to whether
you're likely to be the one discovering a bug that
could have been tested for.

If you have a platform off of that list that you
desparately want to run Rust on, you can add
support, but the difficulty of adding support will vary
based on whether the tools that Rust relies on
already support the platform.

To understand the different processes you can use to
add Rust support for a new platform, let’s quickly
recap the stages that a Rust program goes through
on its journey between the code that you edit and the
code that the processor runs.

 areweideyet.com

`cargo rustc -- --emit asm`

When you compile Rust code, it goes through several
steps. First the compiler makes MIR, Rust's
intermediate representation of the program. That's
the level at which editor integrations hook in to warn
you about errors as you write your code. Your IDE
probably has Rust support; see the link.

 Then the MIR is usually transformed into LLVM IR, the
Low-Level Virtual Machine Intermediate
Representation, which goes to LLVM to be turned
into assembly for the target architecture. LLVM
optimizes the IR and converts it into a runnable
program.

If you want to see what your code has turned into at
each step of this process, you can pass `--emit asm`
 (or llvm-ir, or mir, or llvm-bc, etc) to Cargo, or for
programs that aren't depending on other crates you
can change "Run" to "Show Assembly" on play.rust-
lang.org.

 forge.rust-lang.org/platform-support.html

So, to figure out whether your embedded device of
choice is supported by Rust, first check whether its
architecture appears as a target in the platform
support list. If it's not there, Google around to see
whether LLVM can target it.

If you find that you’re working with a platform that has
LLVM support but doesn’t have Rust support yet,
contact the rust-embedded working group for
guidance on how to add it to Rust!

If you don't want to use LLVM for some reason, you
can also try using Cranelift. Cranelift used to be
called formerly Cretonne. It’s an alternate code
generator, written in Rust, that uses a slightly lower-
level IR than LLVM and can be targeted from rustc.

Regardless of which code generator you prefer, If you
want to add a new target to Rust, you'll have to add it
to a code generator that Rust supports... and that's a
lot of work.

https://github.com/emosenkis/esp-rs

github.com/thepowersgang/mrustc

Alternately, if you have a platform that you can write C
for but that you can’t generate Rust code for, you can
turn your Rust into C and then compile the C through
the usual methods.

Eitan Mosenkis did this to get Rust on the esp8266 by
compiling Rust to C with mrustc and then running
that C through a toolchain capable of targeting the
hardware at hand. The drawback of mrustc is that it
doesn’t do all the borrow checking and verification
that regular rustc does – it assumes the code that
you pass into it is valid Rust. That can be fine if you
run your code through normal rustc first, but it lets
you introduce all kinds of errors if you don't.

● rust-embedded.github.io/book/interoperability/index.html

● https://crates.io/crates/bindgen

Finally, you might find yourself wanting to use some C
code from an embedded Rust program, or some
Rust code form an embedded C program.

If you find yourself in that situation, the Embedded
Rust book goes into greater detail on interoperability
between embedded Rust and embedded C. If you're
looking to take advantage of stuff that's already in C
like this, check it out.

If you're looking to integrate between C and Rust, you'll
likely also want to consider using Bindgen to
automatically generate FFI bindings.

doc.rust-lang.org/core/index.html

If you’re working without the standard library, where do
 primitive types and methods come from?

Even when opting out of using the standard library,
most Rust programs will have the Core crate
available. It doesn’t help out with i/o and
multithreading the way std does, but it still exposes
many of the types and macros that you’re used to.
It’s well documented on the Rust site.

github.com/japaric/xargo

If Rust’s usual standard library won’t work for your
hardware but you need some of its features that
aren’t available in core, tooling is available to build
and use custom versions of it.

Sometimes, you or your dependencies might want to
reimplement pieces of the standard library in a way
that's appropriate for the platforms you're targeting.
In that case, consider using the tool xargo. If you're
watching this talk after 2019, xargo's sysroot building
features may already have been integrated into
Cargo. Check the wiki.

 github.com/rust-embedded/awesome-embedded-rust

So, after all that, you’ve found a device with a story for
targeting it with Rust. Maybe that story is LLVM,
maybe it’s Cranelift, maybe it’s leveraging a C
toolchain.

Next, check out the awesome-embedded-rust repo
(another new thing since I proposed this talk!) to
identify the support crates and example code
available for your platfom.

Many popular embedded platforms have serveral
support crates already written. Remember to check
the Rust versions used and the activity dates on a
crate’s repo to get a guess of how active a project it
is when evaluating it.

If you've only been doing regular Rust so far, you'll see
a lot of new words popping up through these
examples that might confuse you. Many of these
concepts are common to embedded development in
other languages, but they can seem intimidating
when they all come at you at once.

So I’d like to go through a few of the first things you’ll
need to be acquainted with when writing Rust to
target an embedded device.

github.com/fudanchii/imtomu-rs

First, there's HAL everywhere. HAL stands for
Hardware Abstraction Layer, which expresses the
way that standard functions you'd normally get
through the OS should be performed on a given CPU
family.

HAL crates for a given board are also a great place to
look for examples on that board, since they're often
written as a side effect of an expert trying to make
the board do something else. For instance, the Tomu
(Tom's Open Micro USB) is a device developed by
members of our own LCA community, and its HAL
crate includes blinking light and boot examples to get
users started.

rust-embedded.github.io/book/start/semihosting.html

While an embedded board is designed to interface with
inputs and outputs to its surrounding environment, it
generally has little to no human-readable output.

If your program fails in some way as you're developing
it, the board can maybe blink a light at you, but that's
generally about it. To get useful debug information off
of a program that runs on an embedded system,
consider a technique known as semihosting.

Find a semihosting crate for your platform, and then
you can use it to log messages from the embedded
device to your computer or "host" machine's console.
There's a good example of this in the Embedded
Rust Book using the cortex-m-semihosting crate.

Another challenge to designing embedded Rust
programs is also a side effect of the IO-heavy nature
of IoT Things. Although the compiler can check logic
contained within your program thoroughly for errors,
it doesn't know enough about what peripheral
devices might do to enforce the same guarantees of
I/O code.

But, the principles behind writing memory-safe code
still apply. For any thing -- in this case a peripheral --
we want either one mutable (writable) instance, or as
many readable instances as we want.

rust-embedded.github.io/book/peripherals/singletons.html

Using the singleton design pattern helps the compiler
make sure that your code only instantiates each
peripheral once. When you know there’s only one
instance of your peripheral, the borrow checker can
help you reason about whether it could ever be read
from and written to simultaneously.

The alternative would be to use mutable global state to
store the code that represents your peripheral, which
is always unsafe because you can't make
guarantees about whether any other part of the
program will write it while you're trying to read it.

rust-embedded.github.io/book/static-guarantees/state-machines.html

Another way to improve the compiler's ability to reason
about peripheral devices is to model them as state
machines. A state machine is just a representation of
which of several valid states it's permissible to
transition between -- for instance if I had the states of
wait to speak, get onstage, give intro, give talk, take
questions, a state machine could codify the common
sense that says it's not valid to go straight from
waiting to speak to taking questions without giving
the talk in between.

By expressing what the device is allowed to do, the
compiler can check whether your code might ever
ask it to do something illegal.

Abstractions like these state machines are written with
a lot of lines of code. This might make you worried
that they’ll produce larger or slower programs after
compilation.

But they use a bunch of structs that don't actually hold
any data to represent the states, which might seem
like unnecessary bloat to your program. The great
thing about the Rust compiler is that, after using the
state machine to enforce borrowing rules, it can tell
that the states will never be used at runtime, and
they don't actually affect the size of your compiled
program.

 That’s called zero-cost abstraction, and it’s when you
get the benefits of having the abstract idea of the
states without any cost in the sense of an enlarged
or slowed program.

Another challenge when writing embedded software is
concurrency. If you take no special precautions
around concurrency, it's possible that you might get
interrupted during a read or write and get undefined
behavior if the code executed during the interrupt
reads the thing you were writing or writes the thing
you were reading when it fired.

Instead, there are 3 ways you can tackle concurrency
in your code.

The first way to handle concurrency is to avoid it. Don't
handle interrupts, and instead poll the state of things
you care about. For some devices, especially those
that upload data every so many seconds or toggle
their output upon detecting a condition that persists
over time, this can be a viable solution.

Avoiding concurrency altogether makes your programs
easier to write and easier to debug, but it’s not
always possible.

rust-embedded.github.io/book/concurrency/index.htm

The second way to handle currency is by using atomic
operations provided by the instruction set
architecture of the embedded device that you're
targeting. For instance, cortex-m3 offers atomic
operations that will retry until success if they're
interrupted.

If your board and HAL crate support atomics, they can
allow you to perform important operations without the
risk of getting interrupted. But what if you don’t have
atomics?

The final approach to handling concurrency is by
temporarily disabling interrupts while important
pieces of code are executed, but leaving them on the
rest of the time.

These areas of code in which interrupts are disabled
are called critical sections. The syntax for critical
sections will vary based on what the support crates
for your architecture provide. They have the
drawback that an interrupt happening to fall during a
critical section may be missed, but that's less
problematic than getting undefined behavior.

One of the parts of cpu behavior that you’ll have to
micromanage when working without an operating
system is telling Rust what all the chip’s registers do.
Registers are just little spaces in memory where the
CPU stores particular pieces of information.

Each has its own address. Some store specialized
information that the CPU knows to look there for, and
others are general-purpose and can hold whatever
you tell them to.

Using the right specialized registers matters a lot,
since some CPU instructions may use specific ones,
and reading from the right register can tell you about
the current state of the CPU and the last instructions
it performed.

So one of your jobs as an embedded programmer is to
tell Rust about what registers the target of your code
has available.

crates.io/search?q=svd2rust

 Rather than defining all the registers by hand, register
definitions are generated by a tool called svd2rust,
based on SVD (System View Description Format)
files that are often provided by chip manufacturers.

 If you search crates.io for svd2rust plus the name of
the chip you're targeting, you can quickly tell whether
someone else has done the work of producing the
register definition for you. Otherwise, you can use
the svd2rust crate to turn an SVD file provided by
your chip’s manufacturer into Rust code.

● github.com/redox-os/redox
● robigalia.org
● intermezzos.github.io

If you're interested in learning more about embedded
Rust by reading it, the many operating systems
implemented in Rust are a great place to start. The
Redox OS is perhaps the best-known Rust operating
system, and runs on nightly Rust (https://). Robogalia
is working on improving the Rust ecosystem around
the SeL4 microkernel.(https:///). Intermezzos (http:///)
is a teaching operating system that comes with a
book explaining itself, and is designed to help
developers new to systems programming get their
hands dirty.

● www.tockos.org
● Hail board
● imix board

The Tock operating system (https://www.tockos.org/)
offers the Hail and imix open hardware development
boards and focuses on improving the IOT
ecosystem. If you want open hardware boards to
customize for IOT purposes that come with working
Rust code for them out of the box and an active
community, Tock is an excellent resource.

● irc.mozilla.org: #rust-embedded
● Twitter: @rustembedded
● "embedonomicon"
● "debugonomicon"
● github.com/rust-embedded/wg
● rust-embedded.github.io/discovery
● github.com/rust-embedded/awesome-embedded-rust

As I mentioned at the start, Rust's embedded
resources have expanded dramatically even in the
10 months or so since I first proposed this talk to fill
what, at the time, felt like a gap in documentation.

There's now an embedded working group, with an IRC
channel and the handle @rustembedded on Twitter.

If you want a book that will teach you the basics of
embedded microcontrollers while just happening to
use Rust as a teaching language, consult the
embedded discovery book online. For more contact
info and the subteams within the Embedded working
group, check out their GitHub.

 For more experienced programmers, there're the
*nomicon books as well.

There’s the awesome-embedded-rust master list and
there's a Showcase of embedded Rust projects
currently under active development in the rust-
embedded github org.

● Project name?
● What’s it do?
● Who’s it for?
● How finished is it?
● What help do you need?

And one of the huge benefits of being at a conference
like LCA is that, in addition to us speakers, there are
hundreds of amazing attendees who are also experts
in the topics we cover.

Rather than a Q&A session, I’d like to have a mini Rust
BoF. I'd like to hear from those of you who have Rust
IOT projects in progress or want to start them.

Come on up to the mic and tell us what your favorite
Rust IOT project (or project you contribute to) does,
what kind of help or feedback or adoption it's looking
for, and what people should search to find its web
presence!

For everybody that shares a project, I have a little Rust
mascot that you can clip to your bag or your badge
and wear for the rest of the conference as an
indication that people interested in Rust should come
and chat with you.

And everybody with questions -- these are the experts
who'll have the time and inclination to help you
throughout our hallway track, because most of the
questions you're likely to have after this talk will be
far better answered by a series of conversations than
a single sentence from one speaker's opinion!

talks.edunham.net/lca2019
@qedunham

edunham on irc.mozilla.org

