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Hi! I hope you're here to talk about Rust and IOT with 
me. I've contributed to the Rust project in various 
ways for awhile, and done a variety of home 
automation and robotics stuff thoughout my career. 
You will not have heard of me from any prominent 
embedded Rust projects or the fantastic embedded 
Rust book, because those things are written by 
experts who know better than to try to fit any 
summary of the topic into 45 minutes. And that's just 
what I'm going to do. 



  

 

  

When I first proposed this talk to LCA, there wasn't a 
central repository of all the scattered Rust-on-
embedded-systems knowledge. between the 
proposal and today some fantastic resources have 
been published that I'll recommend to you as we go 
through. This frees me up to do a little exercise at the 
end that takes advantage of what makes a 
conference like this really special: the other humans 
in the room. In lieu of a regular Q&A session, at the 
end I'll ask everyone who wants to connect with 
others about their Rust project or idea to give us a 
quick sentence summary of what that idea is, and I 
have these Rust mascots for you to display to make 
it easy for others to find you through the conference. 



  

 

  

First things first, you've probably heard of the Rust 
language. It attacks the appparent dichotomies 
between human-readable versus fast on hardware, 
ergonomic to develop versus verifiable, by sweeping 
a lot of problems under the rug of the compiler and 
then buiding a compiler robust enough to address 
them. To write code free of certain classes of bug in 
any language, you need to follow a series of rules, 
and what sets Rust apart is that these rules live 
explicitly in the language specification and are 
enforced at compile time rather than just living in a 
book or in the programmers' memories.



  

 

  

What we call safe Rust is the set of all programs that 
the compiler can be persuaded don't violate the rules 
-- we know positively that they are right. Unsafe Rust 
is written for circumstances where the compiler can't 
prove exhaustively that the program is right, but it 
can at least show that it's not wrong in certain ways, 
and the rest is left to the programmer to reason 
about. 



  

 

  

The Rust community is constantly improving the 
compiler to expand the set of valid programs it can 
recognize and remove unexpected behaviors, and so 
development tends to move really fast. If you've 
come to my LCA talks in the past, I've discusses how 
a new bleeding-edge release full of features we're 
not sure will be permanent parts of the language 
comes out every day as the nightly channel, some 
features graduate to a beta channel for testing, and 
then some of those come out into "stable" that's 
released every 6 weeks and backwards-compatible 
with other stable Rust versions. 



  

 

  

What's changed since this time last year is they've also 
added the concept of editions and released the 2018 
edition. Editions are opt-in and add a set of features 
that would not have been backwards compatible with 
the prior versions. For instance, the more conscise 
"use foo" syntax for importing an external crate (in 
lieu of "extern crate foo") is not valid in older Rusts, 
but it is valid in programs that have opted into the 
2018 edition.



  

 

  

So, to talk about Rust on IOT, we need to pick a 
snapshot of that buzzword to work from. So, IOT is a 
bunch of Things -- physical devices with computers 
in them -- that interface with the physical world 
through I/O (input/output devices) and communicate 
with other devices or users over a network, often but 
not always a public one. In practice, this often falls 
into the design pattern of a central server talking to a 
bunch of physical devices that are geographically 
dispersed through an environment.

So, we need software on both sides – software to run 
the server, and software to run the devices. Both can 
be written in Rust. 



  

 

  

But most programmers find working with hardware 
more unfamiliar and challenging than writing code to 
run on a server.  

That central server or database in many IOT design 
patterns is actually an extremely familiar use case if 
you've done web development before, and working 
on that end is a great place to start if you're learning 
a new programming language. There are generally 
more resources and mentors available to help you 
debug a web server problem than a hardware one. 

Plus, writing code that runs on an operating system 
lets you avoid thinking about many hardware 
problems while also thinking about your code. The 
operating system can hide these problems from you, 
whereas your code has to deal with them directly if it 
runs without an operating system.



  

 

  

iot.mozilla.org/specification

github.com/mozilla-iot/wiki/wiki/Supported-Hardware

If you choose to have your devices talk to the server 
over a spec such as the Web Thing Standard 
(https://iot.mozilla.org/specification/), you can build 
on the work that others have done and potentially get 
IOT project started without having to do any 
embedded development at all.

The Mozilla Things project Rust example shows how to 
leverage the webthing crate to set up a server that, in 
their example, talks to a dimmable light and a 
humidity sensor that expose the WebThing API. If 
you go this route, check out the wiki 
(https://github.com/mozilla-iot/wiki/wiki/Supported-
Hardware) for a list of supported devices that are 
likely to integrate well with the Web Thing server.

If you’re interested in learning more about the Things 
project, Kathy Giori will be running a workshop in A3 
from 3:50-5:30pm tomorrow. 



  

 

  

 github.com/wezm/linux-conf-au-2019-epaper-badge

I point this out because when you run a program within 
an operating system, the standard library makes all 
kinds of useful guesses about what you want for 
multithreading and i/o. It’s better to avoid 
reimplementing these features when you can, 
because the standard library has been well tested 
over many years on a variety of platforms. 

 As a rule of thumb, if a board is commonly used to run 
a Linux derivative, you can probably write Rust with 
the standard library to target it. A great example of 
this, hopefully here in the room right now, is Wesley 
Moore's epaper badge written in Rust, source at link. 
He runs a Linux derivative on a Raspberry Pi, which 
means a regular Rust program can interface with 
peripherals such as the epaper screen through the 
operating sytsem.



  

 

  

But what about the tiny little chips -- those with power, 
size, or price constraints that rule out the overhead of 
running an operating system under your program? 
Writing software for these, like writing operating 
sytsems, is referred to as embedded programming. 
When you don't have an operating system exposing 
multithreading and I/O primatives to your standard 
library, you have to be more explicit about telling your 
program how you want it to do these tasks. 
Micromanaging how the hardware is used means 
that the resulting code is less portable across 
families of hardware. These families are called 
platforms. 

Fortunately, Rust already provides support for a variety 
of platforms out of the box. 



  

 

  forge.rust-lang.org/platform-support.html

Rust categorizes its support for various platforms in 
tiers . Tier 1 is "guaranteed to work" Every change to 
Rust is tested on every tier 1 platform. Tier 2 is 
"guaranteed to build", in that each change is tested 
that code still builds, but the code is not always run 
for testing, often due to limited availability of 
appropriate hardware. Tier 3 "might work but no 
promises", for platforms on which we can’t always 
test that code will build.  

 These different levels of testing correlate to whether 
you're likely to be the one discovering a bug that 
could have been tested for. 



  

 

  

If you have a platform off of that list that you 
desparately want to run Rust on, you can add 
support, but the difficulty of adding support will vary 
based on whether the tools that Rust relies on 
already support the platform.

To understand the different processes you can use to 
add Rust support for a new platform, let’s quickly 
recap the stages that a Rust program goes through 
on its journey between the code that you edit and the 
code that the processor runs. 



  

 

  

              areweideyet.com

`cargo rustc -- --emit asm`

When you compile Rust code, it goes through several 
steps. First the compiler makes MIR, Rust's 
intermediate representation of the program. That's 
the level at which editor integrations hook in to warn 
you about errors as you write your code. Your IDE 
probably has Rust support; see the link.  

 Then the MIR is usually transformed into LLVM IR, the 
Low-Level Virtual Machine Intermediate 
Representation, which goes to LLVM to be turned 
into assembly for the target architecture. LLVM 
optimizes the IR and converts it into a runnable 
program. 

If you want to see what your code has turned into at 
each step of this process, you can pass  `--emit asm` 
 (or llvm-ir, or mir, or llvm-bc, etc) to Cargo, or for 
programs that aren't depending on other crates you 
can change "Run" to "Show Assembly" on play.rust-
lang.org. 



  

 

  

       forge.rust-lang.org/platform-support.html

So, to figure out whether your embedded device of 
choice is supported by Rust, first check whether its 
architecture appears as a target in the platform 
support list. If it's not there, Google around to see 
whether LLVM can target it. 

If you find that you’re working with a platform that has 
LLVM support but doesn’t have Rust support yet, 
contact the rust-embedded working group for 
guidance on how to add it to Rust!



  

 

  

If you don't want to use LLVM for some reason, you 
can also try using Cranelift. Cranelift used to be 
called formerly Cretonne. It’s an alternate code 
generator, written in Rust, that uses a slightly lower-
level IR than LLVM and can be targeted from rustc. 

Regardless of which code generator you prefer, If you 
want to add a new target to Rust, you'll have to add it 
to a code generator that Rust supports... and that's a 
lot of work. 



  

 

  

https://github.com/emosenkis/esp-rs

github.com/thepowersgang/mrustc

Alternately, if you have a platform that you can write C 
for but that you can’t generate Rust code for, you can 
turn your Rust into C and then compile the C through 
the usual methods. 

Eitan Mosenkis did this to get Rust on the esp8266  by 
compiling Rust to C with mrustc and then running 
that C through a toolchain capable of targeting the 
hardware at hand. The drawback of mrustc is that it 
doesn’t do all the borrow checking and verification 
that regular rustc does – it assumes the code that 
you pass into it is valid Rust. That can be fine if you 
run your code through normal rustc first, but it lets 
you introduce all kinds of errors if you don't. 



  

 

  

● rust-embedded.github.io/book/interoperability/index.html

● https://crates.io/crates/bindgen

Finally, you might find yourself wanting to use some C 
code from an embedded Rust program, or some 
Rust code form an embedded C program. 

If you find yourself in that situation, the Embedded 
Rust book goes into greater detail on interoperability 
between embedded Rust and embedded C. If you're 
looking to take advantage of stuff that's already in C 
like this, check it out. 

If you're looking to integrate between C and Rust, you'll 
likely also want to consider using Bindgen to 
automatically generate FFI bindings. 



  

 

  

doc.rust-lang.org/core/index.html

If you’re working without the standard library, where do 
 primitive types and methods come from? 

Even when opting out of using the standard library, 
most Rust programs will have the Core crate 
available. It doesn’t help out with i/o and 
multithreading the way std does, but it still exposes 
many of the types and macros that you’re used to. 
It’s well documented on the Rust site.



  

 

  

github.com/japaric/xargo

If Rust’s usual standard library won’t work for your 
hardware but you need some of its features that 
aren’t available in core, tooling is available to build 
and use custom versions of it. 

Sometimes, you or your dependencies might want to 
reimplement pieces of the standard library in a way 
that's appropriate for the platforms you're targeting. 
In that case, consider using the tool xargo. If you're 
watching this talk after 2019, xargo's sysroot building 
features may already have been integrated into 
Cargo. Check the wiki. 



  

 

  github.com/rust-embedded/awesome-embedded-rust

So, after all that, you’ve found a device with a story for 
targeting it with Rust. Maybe that story is LLVM, 
maybe it’s Cranelift, maybe it’s leveraging a C 
toolchain. 

Next, check out the awesome-embedded-rust repo 
(another new thing since I proposed this talk!) to 
identify the support crates and example code 
available for your platfom.



  

 

  

Many popular embedded platforms have serveral 
support crates already written. Remember to check 
the Rust versions used and the activity dates on a 
crate’s repo to get a guess of how active a project it 
is when evaluating it. 

If you've only been doing regular Rust so far, you'll see 
a lot of new words popping up through these 
examples that might confuse you. Many of these 
concepts are common to embedded development in 
other languages, but they can seem intimidating 
when they all come at you at once. 

So I’d like to go through a few of the first things you’ll 
need to be acquainted with when writing Rust to 
target an embedded device.  



  

 

  

github.com/fudanchii/imtomu-rs

First, there's HAL everywhere. HAL stands for 
Hardware Abstraction Layer, which expresses the 
way that standard functions you'd normally get 
through the OS should be performed on a given CPU 
family. 

HAL crates for a given board are also a great place to 
look for examples on that board, since they're often 
written as a side effect of an expert trying to make 
the board do something else. For instance, the Tomu 
(Tom's Open Micro USB) is a device developed by 
members of our own LCA community, and its HAL 
crate includes blinking light and boot examples to get 
users started. 



  

 

  

rust-embedded.github.io/book/start/semihosting.html

While an embedded board is designed to interface with 
inputs and outputs to its surrounding environment, it 
generally has little to no human-readable output. 

If your program fails in some way as you're developing 
it, the board can maybe blink a light at you, but that's 
generally about it. To get useful debug information off 
of a program that runs on an embedded system, 
consider a technique known as semihosting. 

Find a semihosting crate for your platform, and then 
you can use it to log messages from the embedded 
device to your computer or "host" machine's console. 
There's a good example of this in the Embedded 
Rust Book using the cortex-m-semihosting crate.



  

 

  

Another challenge to designing embedded Rust 
programs is also a side effect of the IO-heavy nature 
of IoT Things. Although the compiler can check logic 
contained within your program thoroughly for errors, 
it doesn't know enough about what peripheral 
devices might do to enforce the same guarantees of 
I/O code. 

But, the principles behind writing memory-safe code 
still apply. For any thing -- in this case a peripheral -- 
we want either one mutable (writable) instance, or as 
many readable instances as we want. 



  

 

  

rust-embedded.github.io/book/peripherals/singletons.html

Using the singleton design pattern helps the compiler 
make sure that your code only instantiates each 
peripheral once. When you know there’s only one 
instance of your peripheral, the borrow checker can 
help you reason about whether it could ever be read 
from and written to simultaneously. 

The alternative would be to use mutable global state to 
store the code that represents your peripheral, which 
is always unsafe because you can't make 
guarantees about whether any other part of the 
program will write it while you're trying to read it. 



  

 

  
rust-embedded.github.io/book/static-guarantees/state-machines.html

Another way to improve the compiler's ability to reason 
about peripheral devices is to model them as state 
machines. A state machine is just a representation of 
which of several valid states it's permissible to 
transition between -- for instance if I had the states of 
wait to speak, get onstage, give intro, give talk, take 
questions, a state machine could codify the common 
sense that says it's not valid  to go straight from 
waiting to speak to taking questions without giving 
the talk in between. 

By expressing what the device is allowed to do, the 
compiler can check whether your code might ever 
ask it to do something illegal. 



  

 

  

Abstractions like these state machines are written with 
a lot of lines of code. This might make you worried 
that they’ll produce larger or slower programs after 
compilation. 

But they use a bunch of structs that don't actually hold 
any data to represent the states, which might seem 
like unnecessary bloat to your program. The great 
thing about the Rust compiler is that, after using the 
state machine to enforce borrowing rules, it can tell 
that the states will never be used at runtime, and 
they don't actually affect the size of your compiled 
program.

 That’s called zero-cost abstraction, and it’s when you 
get the benefits of having the abstract idea of the 
states without any cost in the sense of an enlarged 
or slowed program.



  

 

  

Another challenge when writing embedded software is 
concurrency. If you take no special precautions 
around concurrency, it's possible that you might get 
interrupted during a read or write and get undefined 
behavior if the code executed during the interrupt 
reads the thing you were writing or writes the thing 
you were reading when it fired. 

Instead, there are 3 ways you can tackle concurrency 
in your code. 



  

 

  

The first way to handle concurrency is to avoid it. Don't 
handle interrupts, and instead poll the state of things 
you care about. For some devices, especially those 
that upload data every so many seconds or toggle 
their output upon detecting a condition that persists 
over time, this can be a viable solution. 

Avoiding concurrency altogether makes your programs 
easier to write and easier to debug, but it’s not 
always possible.  



  

 

  

rust-embedded.github.io/book/concurrency/index.htm

The second way to handle currency is by using atomic 
operations provided by the instruction set 
architecture of the embedded device that you're 
targeting. For instance, cortex-m3 offers atomic 
operations that will retry until success if they're 
interrupted. 

If your board and HAL crate support atomics, they can 
allow you to perform important operations without the 
risk of getting interrupted. But what if you don’t have 
atomics?



  

 

  

The final approach to handling concurrency is by 
temporarily disabling interrupts while important 
pieces of code are executed, but leaving them on the 
rest of the time. 

These areas of code in which interrupts are disabled 
are called critical sections. The syntax for critical 
sections will vary based on what the support crates 
for your architecture provide. They have the 
drawback that an interrupt happening to fall during a 
critical section may be missed, but that's less 
problematic than getting undefined behavior.



  

 

  

One of the parts of cpu behavior that you’ll have to 
micromanage when working without an operating 
system is telling Rust what all the chip’s registers do. 
Registers are just little spaces in memory where the 
CPU stores particular pieces of information. 

Each has its own address. Some store specialized 
information that the CPU knows to look there for, and 
others are general-purpose and can hold whatever 
you tell them to.

Using the right specialized registers matters a lot, 
since some CPU instructions may use specific ones, 
and reading from the right register can tell you about 
the current state of the CPU and the last instructions 
it performed.

So one of your jobs as an embedded programmer is to 
tell Rust about what registers the target of your code 
has available. 



  

 

  

crates.io/search?q=svd2rust

 Rather than defining all the registers by hand, register 
definitions are generated by a tool called svd2rust, 
based on SVD (System View Description Format) 
files that are often provided by chip manufacturers.

 If you search crates.io for svd2rust plus the name of 
the chip you're targeting, you can quickly tell whether 
someone else has done the work of producing the 
register definition for you. Otherwise, you can use 
the svd2rust crate to turn an SVD file provided by 
your chip’s manufacturer into Rust code. 



  

 

  

● github.com/redox-os/redox
● robigalia.org
● intermezzos.github.io

If you're interested in learning more about embedded 
Rust by reading it, the many operating systems 
implemented in Rust are a great place to start. The 
Redox OS is perhaps the best-known Rust operating 
system, and runs on nightly Rust (https://). Robogalia 
is working on improving the Rust ecosystem around 
the SeL4 microkernel.(https:///). Intermezzos (http:///) 
is a teaching operating system that comes with a 
book explaining itself, and is designed to help 
developers new to systems programming get their 
hands dirty. 



  

 

  

● www.tockos.org
● Hail board
● imix board

The Tock operating system (https://www.tockos.org/) 
offers the Hail and imix open hardware development 
boards and focuses on improving the IOT 
ecosystem. If you want open hardware boards to 
customize for IOT purposes that come with working 
Rust code for them out of the box and an active 
community, Tock is an excellent resource. 



  

 

  

● irc.mozilla.org: #rust-embedded
● Twitter: @rustembedded
● "embedonomicon" 
● "debugonomicon"
● github.com/rust-embedded/wg
● rust-embedded.github.io/discovery
● github.com/rust-embedded/awesome-embedded-rust

As I mentioned at the start, Rust's embedded 
resources have expanded dramatically even in the 
10 months or so since I first proposed this talk to fill 
what, at the time, felt like a gap in documentation. 

There's now an embedded working group, with an IRC 
channel  and the handle @rustembedded on Twitter. 

If you want a book that will teach you the basics of 
embedded microcontrollers while just happening to 
use Rust as a teaching language, consult the 
embedded discovery book online. For more contact 
info and the subteams within the Embedded working 
group, check out their GitHub.

 For more experienced programmers, there're the 
*nomicon books as well. 

There’s the awesome-embedded-rust master list and 
there's a Showcase of embedded Rust projects 
currently under active development in the rust-
embedded github org.



  

 

  

● Project name?
● What’s it do?
● Who’s it for? 
● How finished is it?
● What help do you need?

And one of the huge benefits of being at a conference 
like LCA is that, in addition to us speakers, there are 
hundreds of amazing attendees who are also experts 
in the topics we cover. 

Rather than a Q&A session, I’d like to have a mini Rust 
BoF. I'd like to hear from those of you who have Rust 
IOT projects in progress or want to start them. 

Come on up to the mic and tell us what your favorite 
Rust IOT project (or project you contribute to) does, 
what kind of help or feedback or adoption it's looking 
for, and what people should search to find its web 
presence! 

For everybody that shares a project, I have a little Rust 
mascot that you can clip to your bag or your badge 
and wear for the rest of the conference as an 
indication that people interested in Rust should come 
and chat with you. 

And everybody with questions -- these are the experts 
who'll have the time and inclination to help you 
throughout our hallway track, because most of the 
questions you're likely to have after this talk will be 
far better answered by a series of conversations than 
a single sentence from one speaker's opinion!
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