
Hi, I'm edunham, and this is a crash course 
on skills that you can use to turn technical 
expertise into personal and professional 
success.

Who here prefers computers over people?

Don't be shy, I can't be the only one here.

But a key tech skill is communication.

Software is a thing that people make for 
other people to use.

Writing code is communication with your 
users. 
They might be people, or other programs... 
Which are also written by people!

One communication skill is to look for the 
overlap between what someone else wants, and 
what you want.

That takes some empathy, and it's the essence
of negotiation.

Negotiation is where you explore how you and 
someone else can build a thing that meets 
both your needs -- whether that thing is a 
job description, a salary, a deadline, or the
specs of a new product.

Never be afraid to negotiate.

Also, here's your daily reminder that it's ok
to ask for help. Your time is valuable. Don't
waste it on problems that a quick question or
search could easily solve.

Most people like talking about themselves, 
and enjoy giving advice.

I also value advice from people I don't want 
to emulate, because it helps me understand 
how they got where they are.

While others can be helpful, you’re 
ultimately responsible for your own 
wellbeing.

Wearing yourself down by tolerating a toxic 
environment, or overworking yourself into 
exhaustion and burnout, won't accomplish any 
of your goals.

So stand up for yourself. 

Your boss's job is to make sure your team 
delivers its product. 

Your company's job is to accomplish its 
mission, which probably involves making 
money.

And none of these things are easy. The real 
world plays by the rules of physics and 

sociology and economics, and those rules 
don't let everybody succeed all the time.

While schoolwork is often about learning to 
get the same answers as everyone else, most 
work in the industry is about building 
something new or doing something differently.

In other words, you’re searching through all 
possible solutions to a problem to figure out
which ones will work.

You'll find a lot of solutions that look like
they should work, but don't.

That's ok.

The smarter and faster you search through 
possible solutions, the sooner you'll find 
something that works. 

Find the tools let you skip to the 
interesting and important parts of a problem.

Find an editor that works for you, and 
customize it how you need. Keep your code in 
version control. Learn to learn new 
languages, and pick the best for each task.

Avoid insulting the tools that others choose.
Instead, ask how that tool won the 
competition for their attention.

To avoid doing same year of work 20 times in 
a row, you've got to quit doing things once 
they get easy for you. But they've still 
gotta get done. Delegate to a person, or 
write a bot.

When you’re doing things that challenge you, 
you'll sometimes get stuck. Learn strategies 
to get unstuck. I like to try approaches from
other fields to see what new questions they 
uncover.

Attack your problem with a technique from an 
art or a sport or a game, and see whether it 
helps or where it gets you. Isn't that smart?

It’s ok to value “being smart”, but learn the
difference between a growth mindset and a 
fixed minset. Carol Dweck's TED talks explain
it great.

And finally, I'm sure all of you here will 
encounter problems that nobody has ever seen 
before. 

Please share what you learn from them.

If everyone helps teach others, we'll all be 
rewarded with a better industry to work in.

Thanks to everybody who shared their advice 
for this talk, and special thanks to the 
mentors who've helped shape my career.


